
English | Size: 2.89 GB
Genre: eLearning
Design and Integrate AI-Powered S/LLMs into Enterprise Apps using Prompt Engineering, RAG, Fine-Tuning and Vector DBs
What you’ll learn
Generative AI Model Architectures (Types of Generative AI Models)
Transformer Architecture: Attention is All you Need
Large Language Models (LLMs) Architectures
Text Generation, Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search
Generate Text with ChatGPT: Understand Capabilities and Limitations of LLMs (Hands-on)
Function Calling and Structured Outputs in Large Language Models (LLMs)
LLM Providers: OpenAI, Meta AI, Anthropic, Hugging Face, Microsoft, Google and Mistral AI
LLM Models: OpenAI ChatGPT, Meta Llama, Anthropic Claude, Google Gemini, Mistral Mixral, xAI Grok
SLM Models: OpenAI ChatGPT 4o mini, Meta Llama 3.2 mini, Google Gemma, Microsoft Phi 3.5
How to Choose LLM Models: Quality, Speed, Price, Latency and Context Window
Interacting Different LLMs with Chat UI: ChatGPT, LLama, Mixtral, Phi3
Installing and Running Llama and Gemma Models Using Ollama
Modernizing Enterprise Apps with AI-Powered LLM Capabilities
Designing the ‘EShop Support App’ with AI-Powered LLM Capabilities
Advanced Prompting Techniques: Zero-shot, One-shot, Few-shot, COT
Design Advanced Prompts for Ticket Detail Page in EShop Support App w/ Q&A Chat and RAG
The RAG Architecture: Ingestion with Embeddings and Vector Search
E2E Workflow of a Retrieval-Augmented Generation (RAG) – The RAG Workflow
End-to-End RAG Example for EShop Customer Support using OpenAI Playground
Fine-Tuning Methods: Full, Parameter-Efficient Fine-Tuning (PEFT), LoRA, Transfer
End-to-End Fine-Tuning a LLM for EShop Customer Support using OpenAI Playground
Choosing the Right Optimization – Prompt Engineering, RAG, and Fine-Tuning
Vector Database and Semantic Search with RAG
Explore Vector Embedding Models: OpenAI – text-embedding-3-small, Ollama – all-minilm
Explore Vector Databases: Pinecone, Chroma, Weaviate, Qdrant, Milvus, PgVector, Redis
Using LLMs and VectorDBs as Cloud-Native Backing Services in Microservices Architecture
Design EShop Support with LLMs, Vector Databases and Semantic Search
Design EShop Support with Azure Cloud AI Services: Azure OpenAI, Azure AI Search
Develop .NET to integrate LLM models and performs Classification, Summarization, Data extraction, Anomaly detection, Translation and Sentiment Analysis use case
Develop RAG – Retrieval-Augmented Generation with .NET, implement the full RAG flow with real examples using .NET and Qdrant
In this course, you’ll learn how to Design Generative AI Architectures with integrating AI-Powered S/LLMs into EShop Support Enterprise Applications using Prompt Engineering, RAG, Fine-tuning and Vector DBs.
We will design Generative AI Architectures with below components;
- Small and Large Language Models (S/LLMs)
- Prompt Engineering
- Retrieval Augmented Generation (RAG)
- Fine-Tuning
- Vector Databases
We start with the basics and progressively dive deeper into each topic. We’ll also follow LLM Augmentation Flow is a powerful framework that augments LLM results following the Prompt Engineering, RAG and Fine-Tuning.
Large Language Models (LLMs) module;
- How Large Language Models (LLMs) works?
- Capabilities of LLMs: Text Generation, Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search, Code Generation
- Generate Text with ChatGPT: Understand Capabilities and Limitations of LLMs (Hands-on)
- Function Calling and Structured Output in Large Language Models (LLMs)
- LLM Models: OpenAI ChatGPT, Meta Llama, Anthropic Claude, Google Gemini, Mistral Mixral, xAI Grok
- SLM Models: OpenAI ChatGPT 4o mini, Meta Llama 3.2 mini, Google Gemma, Microsoft Phi 3.5
- Interacting Different LLMs with Chat UI: ChatGPT, LLama, Mixtral, Phi3
- Interacting OpenAI Chat Completions Endpoint with Coding
- Installing and Running Llama and Gemma Models Using Ollama to run LLMs locally
- Modernizing and Design EShop Support Enterprise Apps with AI-Powered LLM Capabilities
- Develop .NET to integrate LLM models and performs Classification, Summarization, Data extraction, Anomaly detection, Translation and Sentiment Analysis use cases.
Prompt Engineering module;
- Steps of Designing Effective Prompts: Iterate, Evaluate and Templatize
- Advanced Prompting Techniques: Zero-shot, One-shot, Few-shot, Chain-of-Thought, Instruction and Role-based
- Design Advanced Prompts for EShop Support – Classification, Sentiment Analysis, Summarization, Q&A Chat, and Response Text Generation
- Design Advanced Prompts for Ticket Detail Page in EShop Support App w/ Q&A Chat and RAG
Retrieval-Augmented Generation (RAG) module;
- The RAG Architecture Part 1: Ingestion with Embeddings and Vector Search
- The RAG Architecture Part 2: Retrieval with Reranking and Context Query Prompts
- The RAG Architecture Part 3: Generation with Generator and Output
- E2E Workflow of a Retrieval-Augmented Generation (RAG) – The RAG Workflow
- Design EShop Customer Support using RAG
- End-to-End RAG Example for EShop Customer Support using OpenAI Playground
- Develop RAG – Retrieval-Augmented Generation with .NET, implement the full RAG flow with real examples using .NET
Fine-Tuning module;
- Fine-Tuning Workflow
- Fine-Tuning Methods: Full, Parameter-Efficient Fine-Tuning (PEFT), LoRA, Transfer
- Design EShop Customer Support Using Fine-Tuning
- End-to-End Fine-Tuning a LLM for EShop Customer Support using OpenAI Playground
Also, we will discuss
- Choosing the Right Optimization – Prompt Engineering, RAG, and Fine-Tuning
Vector Database and Semantic Search with RAG module
- What are Vectors, Vector Embeddings and Vector Database?
- Explore Vector Embedding Models: OpenAI – text-embedding-3-small, Ollama – all-minilm
- Semantic Meaning and Similarity Search: Cosine Similarity, Euclidean Distance
- How Vector Databases Work: Vector Creation, Indexing, Search
- Vector Search Algorithms: kNN, ANN, and Disk-ANN
- Explore Vector Databases: Pinecone, Chroma, Weaviate, Qdrant, Milvus, PgVector, Redis
Lastly, we will Design EShopSupport Architecture with LLMs and Vector Databases
- Using LLMs and VectorDBs as Cloud-Native Backing Services in Microservices Architecture
- Design EShop Support with LLMs, Vector Databases and Semantic Search
- Azure Cloud AI Services: Azure OpenAI, Azure AI Search
- Design EShop Support with Azure Cloud AI Services: Azure OpenAI, Azure AI Search
This course is more than just learning Generative AI, it’s a deep dive into the world of how to design Advanced AI solutions by integrating LLM architectures into Enterprise applications.
You’ll get hands-on experience designing a complete EShop application, including LLM capabilities like Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search, Code Generation.
Who this course is for:
- Beginner to integrate AI-Powered LLMs into Enterprise Apps

rapidgator.net/file/60ec7d2a5a769078dae1e9e288a8c5a6/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part1.rar.html
rapidgator.net/file/4fd72870d64b6301ebba0cd8e87aae2a/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part2.rar.html
rapidgator.net/file/f4240528bd353e23b9f9caa6e8e428f1/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part3.rar.html
rapidgator.net/file/44917df94bd83916d096d29fb3e8f935/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part4.rar.html
rapidgator.net/file/cce0d96c6c21c945631c6b7a10084a8f/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part5.rar.html
rapidgator.net/file/04dbd046984f4ed3a5937bdcc89b3c71/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part6.rar.html
rapidgator.net/file/5aa0aafe2f5d0434b149b7e438c541cb/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part7.rar.html
rapidgator.net/file/32c3f118a6605660b7b54137efeed049/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part8.rar.html
trbt.cc/3bkujfm95kla/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part1.rar.html
trbt.cc/pvcgmkqdcn66/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part2.rar.html
trbt.cc/yfd6gzhp18h2/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part3.rar.html
trbt.cc/ybq3g0j7h2iu/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part4.rar.html
trbt.cc/6fkanp7k7yin/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part5.rar.html
trbt.cc/9guwcz6bprih/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part6.rar.html
trbt.cc/k263rbft5vwc/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part7.rar.html
trbt.cc/ywxi95tswbxa/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB10802025-9.part8.rar.html
If any links die or problem unrar, send request to
forms.gle/e557HbjJ5vatekDV9